
Radare2
sudo r2 -d 1

What is Radare?

Framework for reverse-engineering and binary analysis

Consists of many tools

Began as scriptable commandline hex editor

Now capable of many things (*)

Parts of the radare Project

rabin2 - Binary information

radiff2 - Binary Diff

rasm2 - Dis/assembler

ragg2 - Compiler

More parts of the radare Project

rax2 - Base converter (and more)

rahash2 - Calculate all the hashes

rarun2 - Run application in special context

r2 - Interactive shell application of everything else

radare2 - Symlink to r2

Why even Radare2?

Free Software!

GDB can’t do fancy shit. (GDB-PEDA is still not as good)

Masochism! (Documentation and syntax)

Fancy console graphics!

Bugs!

Basics in reverse engineering

2 principles of analysis:

Static analysis (staring at assembler code)

Dynamic analysis (debugging)

Basics in reverse engineering

Why re your own code:

○ analyze compiler output
○ find compiler bugs
○ general debugging

(gdb should be better in most of these scenarios)

Basics in reverse engineering

Why re code of others:

○ Find hidden things (e.g. hardcoded passwords)
○ Modify executables (e.g. remove copy protection)
○ Learn application layout (e.g. for building exploits)
○ To reimplement application (e.g. nouveau driver)

Assembly 101
The language of the (x86) machine

Assembly knowledge

Default: intel assembler syntax

<op> <dest>,<src>

mov eax, 2; Copies the value 2 in eax

add eax, 8; Adds 8 to eax and stores the result in eax

call 0xdead; Calls function at 0xdead

Assembly commands

How many: TONS. Also: Architecture specific

Calculations: add, sub, mul, div, inc, dec, cmp

Jumps: jmp, jz, jnz, ja, jb, j{something}, call, ret

Copy: mov, lea

Stack operations: push, pop

Registers, Memory and Stack

Registers:
○ Fastest memory in CPU
○ some are “Variables” some are special (ebp, esp, eip, *)
○ can be r+w, ro, wo

General purpose registers:

eax, ebx, ecx, edx

Registers, Memory and Stack

Memory:

mov eax, dword [0xdead];Copy from 0xdead into eax

mov ebx, dword [eax]; Copy from address into ebx

mov dword [0xdead], ebx;Write from ebx to memory

lea eax, [ebp - 0x10]; Copy pointer to [...] into eax

Endianess

How is multi byte information stored

Big endian: highest byte first, lowest last

Little endian: lowest byte first, highest last

x86 is little endian

Little endian

Example:

mov dword [0x1000], 0x12345678;

becomes:

0x1000: 0x78563412

in memory

Back to Radare

GUI?

Build for command line use

Has console based visual mode

There is a (experimental) GUI named “cutter”

Pro: Fast nice overview

Con: Compared to this r2 is bug-free. Also can’t debug.

Radare2 basic usage

Normal mode:

○ append “?” for help
○ commands are a collection of letters with parameters
○ a* analysis commands, d* debugger commands, ...
○ run “?” for overview

I recommend radare2 intro:
 https://github.com/radare/radare2/blob/master/doc/intro.md

Radare2 visual mode

○ Enter with “V”, leave with “q”
○ Change display type with “p” and “P”
○ Navigate with arrows or hjkl
○ Graph-mode with “V”, exit with “q”
○ Follow jumps by typing the jump’s annotated label
○ Enter normal mode commands with “:”

Again, the intro document is really helpful

And now some workshop time!
(If anyone is interested, otherwise demo time)

git@git.vartijat.de:fpape/Radare2-Demo.git

Haxx0r my password
bin/hardcoded/easypeasy.32

static analysis

I'd just like to interject for a moment
binary editing with /bin/uname

Bufferoverflow
bin/overflow/level03

Example stolen from io.netgarage.org

